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1. Introduction 

Security price dynamics are an important part of microstructure research that has become 

a fundamental framework for a number of financial markets analyses.1 Earlier theories of 

information asymmetry propose that private information deduced from trading activities 

causes market price changes (see, for example, Kyle 1985). Since then investigations into 

stock price changes have included a variety of market attributes to proxy for information. 

However, some unique characteristics of stock price series are not accounted for in many 

prior studies. It is now well recognised that security price series do not follow a 

continuous path. Ignoring price discreteness potentially causes contamination of results, 

especially in studies that use intraday prices. In such fine samples discreteness limits the 

extent of price changes (Hausman et al. 1992). This feature, however, is excluded by the 

commonly used stochastic processes with continuous state spaces. Based on the 

Australian Securities Exchange (ASX), this paper examines intra-day stock price 

dynamics by predicting the direction of price movements from market attributes while 

specifically incorporating characteristics of prices such as discreteness, even spacing of 

trades, and the conditional mean and variance of price changes. The analysis utilizes an 

ordered probit model with the power to account for discreteness. We show in our 

specification that the ordered probit framework can also capture the impact of order flow 

and market momentum measured by a number of independent variables on price 

dynamics. 

                                                 
1 See, for example, Barclay and Litzenberger (1988), Almgren and Chriss (1998) and Bertsimas and Lo 
(1998). 
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This study extends the existing literature on market attributes that are related to 

price changes. Apart from including the variables found significant in other market 

microstructure studies on transaction data, such as trade size, trade indicator, and bid-ask 

spread, this paper investigates the explanatory power of depth and trade imbalance, also 

referred to as order imbalance in studies on quote driven markets.2   

The use of depth is motivated from the finding of Heflin and Shaw (2005) that 

depth is a predominant indicator of informed trading when used to scale raw trade size. 

Thus, the level of information asymmetry should be assessed from trade size relative to 

the depth measured as the number of shares available for trade at the best bid and ask 

prices. Inferred from this definition, the intuition is that the consequent price changes 

should be positively (negatively) correlated with bid (ask) depth. 

The inclusion of trade imbalance is derived from the theoretical work of Kyle 

(1985) that demonstrated the information content of net order flow. Consistent with 

theoretical model predictions, empirical studies show evidence that order imbalances 

have a positive impact on returns.3 We therefore expect to obtain the same relation from 

our estimations.   

We also contribute to the literature on the role of inter-trade arrival time. Past 

findings suggest that the time between two consecutive trades, referred to as duration 

here, is not exogenous, but dependent upon other market attributes (Easley and O’Hara 

(1992)). In this study the exogeneity of durations is tested formally in an Autoregressive 

                                                 
2 For examples of microstructure studies using transaction data, see Hausman et al (1992) and Hasbrouck 
(1991). 
3 See Huang and Chou (2007) for applications of order imbalances to analyses of order and quote driven 
markets. 
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Conditional Duration (ACD) specification. Following the theoretical work of Easley et al. 

(1996), and the empirical finding of Dufour and Engle (2000) that there is more 

information based trading and hence greater price impact in intensively traded stocks, we 

conjecture that the duration is negatively related to price changes. Our work contributes 

to the growing literature applying ACD models to between-trade durations and stock 

price predictions (see, for example, Hafner 2005 and Fernandes and Grammig 2006). In 

particular, we extend Hafner (2005) by adding more factors than volume in predicting 

price changes. 

The forecasting results from estimated parameters in the modelling framework 

provide potentially useful trading guidance to market practitioners as to the direction of 

stock price movements. The out-of-sample forecasts indicate an average 71% of correctly 

predicted trades. The distribution of the actual and estimated cases reveals that using the 

model, even in cases of prediction error, the risk of adverse selection is ruled out.       

The remainder of this paper is as follows. The next section provides a review of 

the literature. Section 3 outlines model specifications. In Section 4 we provide data and 

variable descriptions. Section V presents our empirical results. Section 6 concludes. 

 

2. Literature Review 

The fact that security prices are quoted in increments of one cent or half a cent means that 

price series are not continuous. Gottlieb and Kalay (1985) were the first to model discrete 

transaction prices. Variations and generalisations of the model include Ball (1988), 

Glosten and Harris (1988), Harris (1990), Dravid (1991), and Hasbrouck (1999). In these 
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models discrete transaction prices are allowed to evolve as a rounded random walk. 

Depending on the market-making cost and rounding methods used, these models 

generally have incomparable implications for the behaviour of the transaction prices. 

Ordered probit is another type of model that can capture the discreteness in transaction 

prices using standard statistical techniques, with relative ease of application. Initially 

proposed by Aitchinson and Silvery (1957) and developed in Gurland et al. (1960), the 

ordered probit model is simply a generalisation of a linear regression model when the 

dependent variable is discrete. Hence it can be used to investigate the distribution of 

transaction prices conditional on the sequence of past price changes and market 

conditions.   

Early theoretical studies on price adjustments to information stressed the 

importance of the arrival time of trades (Diamond and Verrechia 1987, Admati and 

Pfleiderer 1988, 1989). On the assumption that the time between transactions, also known 

as the duration, is exogenous, Hausman et al. (1992) and Fletcher (1995) find significant 

correlation between duration and price changes. However, the exogeneity of time remains 

a question of interest. Easley and O’Hara (1992) propose that if the time between trades 

is related to other market covariates, then time is no longer exogenous to the price 

process. This prediction is confirmed in the empirical study of Dufour and Engle (2000), 

where reciprocal interactions of the price, trade and time are discovered on the NYSE. 

The conditional mean of the duration is modelled using an Autoregressive Conditional 

Duration (ACD) framework by Engle and Lange (2001) who find the coefficient of 

durations significant in their model of liquidity. 
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The existing market microstructure literature has developed theory for the key 

role of information asymmetry in the formation of security prices. Theoretical models 

suggest that market makers always lose in trading with informed traders who possess 

private information. They therefore adjust bid and ask quotes in trading activities, 

through which public and private information is impounded in the price and other market 

attributes. This proposition is verified by evidence of a close relation between stock 

returns and variables such as spread, trade size and trade indicator in ample empirical 

research.4 For example, Barclay and Warner (1993) argue that price is driven mainly by 

the mid-sized trades on NYSE. Hasbrouck (1991) demonstrates that the trade indicator is 

an appropriate proxy for classifying the source of price changes into one due to a 

permanent informational effect and the other resulting from a transient market-related 

effect. The positive relation between trade size and returns in the theoretical framework 

of Easley and O’Hara (1987) is backed up by the empirically findings of Hasbrouck 

(1991), among others. 

Order flow is another element that receives continuing interest in academic 

research. Theoretical accounts of order flow trace back to Kyle (1985). In Kyle’s 

dynamic model, a single informed trader possessing private information acts strategically 

in a market with dealers and uninformed noise traders to move the market price. The 

model shows that price change is linear in the order flow ‘x + μ’, where x is the trade 

quantity of the informed trader and μ is the trade quantity of noise traders. The price will 

show a sustained change if the order flow is concentrated on one side of the market.  

                                                 
4 For evidence on the information content of these market variables in theoretical and empirical studies, see 
for example, Bagehot (1971) Easley and O’Hara (1987), Hasbrouck (1991), and Barclay and Warner 
(1993). 
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There is empirical evidence of net order flow being an important measure of 

trading activity. Chordia and Subrahmanyam (2004) argue that the net order flow 

measured by order imbalance is more valuable in explaining the direction of future price 

moves than volume. This is an outcome of market makers’ continuous readjustment of 

their inventories at each trade. Using neural networks, Plerou et al. (2002) find that the 

expected price change is a concave function of trade imbalance. In a fully automated 

order driven trading system, Huang and Chou (2007) also demonstrate the significant 

information content of trade imbalance. The usefulness of the net order flow in the 

absence of market makers is manifest in the evidence that trade imbalance is predictive of 

future price direction (Chordia and Subrahmanyam 2004).    

Many prior studies are dedicated to unveiling the relation between stock price 

changes and volume. Although there is evidence that trade size, measured as number of 

transactions or aggregated trading volume, explains future stock price changes (Hafner, 

2005), it is only in recent studies that the depth is found also instrumental to returns 

(Heflin and Shaw 2005). Generally, depth denotes the volume of orders available to be 

traded at a particular price level, for example at the best bid and ask prices. The depth of 

the market and its dynamics are investigated by Muranaga and Shimizu (1999) in 

simulated markets.  Heflin and Shaw (2005) argue that since the market maker’s price-

quantity schedules evolve over time, which reflects in the shift in quoted depth, the level 

of information asymmetry embedded in trade size should be assessed relative to the 

quoted depth on the market at the time of the transaction.  

In an order driven trading system such as the ASX, where the matching of orders 

is fully automated and the price-quantity schedules are available to all market 
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participants, the usefulness of depth is more intuitive. For instance, the consequent price 

movement of a given trade, initiated, for instance, by a market order to buy, will depend 

on the size of the trade relative to the depth at the best ask price at the time of the trade. A 

medium trade in its raw size might cause a large price change in a thin market depth, and 

a large trade in its raw size might cause a small price change in a thick market depth.  

 

3. Model Specification 

3.1. The ordered probit model 

The ordered probit framework employed in this paper is a variation of Hausman et al. 

(1992). The dependent variable of an ordered probit model is a latent (unobservable) 

continuous variable, denoted dp* for instance, whose conditional mean is a linear 

function of a number of explanatory variables. Although dp* is unobserved, it is related 

to an observed discrete variable dp, whose value is dependent upon the values that dp* 

takes. The ordered probit model requires that the dependent variable should be in the 

form of integer with natural ordering. In the case of a sequence of quoted prices denoted 

as P0, P1, …, Pk, the price change in dollars from trade k−1 to k,  i.e. Pk − Pk-1, is therefore 

multiplied by 100, that is, dpk = 100 × (Pk − Pk-1), to obtain an integer that denotes price 

change in ticks. For example, if the price of a given stock rises from A$3.04 to A$3.05, 

we say it has moved one tick up (dpk = 100 × (3.05 − 3.04) = 1)).  In the ordered probit 

specification, we denote dpk* as a latent continuous random variable that is determined 

by a number of explanatory variables such that: 
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dpk* = X’kβ + εk, 

E [εk | Xk] = 0, εk i.n.i.d. N (0,σ2
k),    (1) 

where εk’s are independently but not identically distributed with a mean of zero and a 

conditional variance of σ2, and Xk is a q×1 vector of predetermined explanatory variables 

that determines the conditional mean of dpk*. The observed price changes dpk relate to 

the continuous variable dpk* using the following rules: 
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where the sets Ak form a partition of the state-space of Z*k. In our current application, s’s 
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According to Hausman et al. (1992), the dependence structure of the observed 

process Zk is induced by that of Zk* and definitions of the Ak’s as follows:  

)Adp|Adp(P)sdp|sdp(P j
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kj1kik ∈∈=== −− .    (4) 

The conditional distribution of dpk on Xk is determined by the partition boundaries and 

the particular distribution of εk. The conditional distribution for Gaussian εk’s is  
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where Φ(.) is the standard normal cumulative distribution function. Equations (5) and (6) 

show that the probability of a particular observed price change is determined by the 

location of the conditional mean X’k, relative to the partition boundaries. For a given 

conditional mean, a shift in the boundaries will change the probabilities of observing the 

initial states. On the other hand, given the partition boundaries, a higher conditional mean 

suggests a higher probability of observing a more extreme positive state. Therefore, by 

allowing the data to decide the appropriate partition boundaries, i.e. the α’s, the β 

coefficients of the conditional mean, and the conditional variance σ2
k in a log-likelihood 

function as shown in (7) below. The ordered probit model can capture the relation 

between the observed discrete price changes dpk and the unobserved continuous process 

dpk* as a function of a number of financial market attributes Xk. 

 11



∑
∑

= −

−
−

=

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−⋅+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
⋅+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
⋅

=
n

1k

k

'
k1m

mk

k

'
k1i

k

'
ki

1m

2i
ik

k

'
k1

k1

X
1logY

 
XX

logY{
X

logY

)X|dp(L

σ
βα

Φ

σ
βα

Φ
σ

βα
Φ

σ
βα

Φ

         (7) 

 

Recall that the residual series εk from the estimation is not identically distributed 

with a time-varying conditional variance of σk
2. A GARCH (2,2) specification is then 

applied to accommodate this heteroscedasticity in residuals. Hausman et al. (1992) find 

that σk
2’s depend on the time between trades and the trade indicator. In this context, the 

dependent variable dpk* is expected to be fully explained by the explanatory variables, so 

the residual series is independent of the explanatory variables.      

 

3.2. The empirical specification 

First of all, the number of states, m, needs to be chosen for the ordered probit model.  As 

this paper is concerned with predicting the probability of whether the direction of the next 

price will rise, fall or stay the same, we set m=3 to represent the three states of price 

changes. In particular, all negative price changes starting from one tick downwards are 

grouped together into a common event that is denoted by dpk = –1; all price rises starting 

from one tick upwards are grouped together into a common event that is denoted by dpk = 

+1; and unchanged prices are denoted as dpk = 0. 

Second, the dependent variable, the price change, needs to be defined. To 

eliminate unnecessary autocorrelation and volatility in price series due to price reversals 
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between bid and ask prices, which is usually detected in market microstructure studies, 

we use quote revisions, i.e. changes in quote prices, to measure price movements instead 

of transaction price changes or mid-point price changes. In particular, the quoted bid 

revisions are utilised since a risk-averse investor is more sensitive to adverse changes in 

the bid price than the ask price. Price changes from one transaction to another that do not 

result in a change in quoted bid price are excluded. 

It should be noted that the distribution function of the price series is accounted for 

in the model specification. By shifting the boundaries, the ordered probit can fit other 

arbitrary multinomial distributions as well as the normal distribution. Our estimating 

results are therefore likely immune to the underlying distribution functions of the price 

series.  

 

3.3. The ACD model for the time between trades 

In the literature time between two consecutive trades, or transaction duration, is highly 

irregularly spaced. The Autoregressive Conditional Duration (ACD) approach taken by 

Engle and Russell (1998) to model this irregularly spaced transaction duration is based on 

its following a conditional point process. A point process is said to evolve with after-

effects and to be conditionally ordered when the current arrival rate is dependent upon the 

times of prior transactions. The ACD is a type of point process which is suited for 

modelling characteristics of clustering and over-dispersion in time series. Engle and 

Russell (1998) suggest a description of such a process in terms of the intensity function 

conditional on all available past arrival rates. In other words, the conditional intensity 
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function is considered as the conditional probability of the next transaction occurring at τ, 

being conditioned on the transaction times of previous trades over the interval [τ0, τ).  

If the sequence of times of each transaction’s occurrence is denoted as {τ1, τ2, …} 

with τ1 < τ2 < … < τk <…, we can express the duration between two consecutive 

transactions that occur at time τk and τk-1 as xk = τk -τk-1. Following Engle and Russell 

(1998), we first remove the deterministic diurnal component Φk-1 of arrival times and 

consider the stochastic component of durations that are diurnally adjusted, 1−= kkk /xx~ Φ . 

Then a linear ACD(p,q) model parameterises the kth durational conditional mean, 

( kkk x )~,...,x~|x~E ψ=− 11 , in a ARMA-type specification  
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with ω > 0, > 0, i = 1, 2, …N. If we consider the simplest ACD(1,1) model with 

parameters α and β only, the unconditional expectation (μ) and variance (σ2) of the 

durations are 
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     (9) 

Relying on proof provided in Engle and Russell (1998), we show in equation (9) 

that σ is greater than μ whenever α > 0, implying that the model can account for over 

dispersion, which is commonly observed in duration series. It is assumed that the 

standardized durations computed from conditional and unconditional durations, 
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 kkk /x~ ψε = ,      (10)  

are independently and identically distributed (i.i.d.) for all k’s. This assumption implies 

that all temporal dependence in the duration series is captured by the defined mean 

function. As far as the distribution function of durations is concerned, we consider the 

widely utilized Weibull distribution. The Weibull distribution is generally preferred to the 

exponential distribution for duration data which tend to show over-dispersion with 

extreme values (as in very shot and long durations). The conditional density function of 

adjusted durations, ( )kx~g , based on the Weibull distribution is given by 
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where λ is the scale parameter. The above equation also gives the density function for 

exponential distribution. The density function is obtained as a special case when λ = 1. In 

our estimated results clearly λ is unity for none of the stocks.   

As the ACD models resemble GARCH models in many properties, a quasi-

maximum likelihood approach used for estimating GARCH parameters is also applicable 

to estimating ACD parameters. Given the conditional density function, it is 

straightforward to derive and estimate the parameters in the following log-likelihood 

function: 
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4. Data and statistics 

4.1. Data and Variables 

We obtained data for this study from the Securities Industry Research Centre of Asia-

Pacific (SIRCA) in Australia. The database contains detailed information relative to 

orders and trades for all stocks listed on the ASX. Our sample encompasses nine stocks 

from each of the nine major industry sectors in Australia (Consumer Discretionary, 

Consumer Staple, Energy, Financials, Health Care, Industrials, Information Technology, 

Materials, Telecommunication Services, and Utilities). We choose a sample period of 1 

April 2002 to 31 July 2002 when there are no significant structural changes in these 

firms. For each transaction, our sample contains the following information: the date, time, 

size, price, spread, trade indicator, depth, and the sector index corresponding with each 

stock.  

We note that there may be abnormal price changes at the opening of the market 

due to overnight arrival of new information, as well as at the closing of the market when 

fund managers and stock brokers trade aggressively to achieve the VWAP (volume 

weighted average price) of the day or to close out their outstanding positions (Engle and 

Russell (1998)). For this reason, only trading and order information from normal trading 

hours, i.e. between 10:40am and 15:30pm, are included in the sample.5 In addition, price 

changes are adjusted for date changes. The first observation of the price change at the 

start of each day is set to zero so that the price change of today does not depend on 

yesterday’s last price. Similarly, the first 30 observations of the trade imbalance (TIB) 

                                                 
5 Previous studies by Engle and Lange (2001) and Dufour and Engle (2000) also made adjustments to avoid 
contamination of prices by overnight news arrival. 
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variable are also set to zero as it is unrealistic to calculate today’s trade imbalance from 

trades that occurred yesterday.  

To examine how the direction of price movements is affected by the sequence of 

trades, we consider an ordered probit model that allows us to include explanatory 

variables associated with trades. The market attribute dpk is the price change at trade k 

from trade k-1. Since for all stocks the minimum price change allowed is 1¢, multiplying 

price difference by 100 gives price change in ticks (cents) as an integer,  

dpk = 100 × (Pk - Pk-1).       (13) 

Sprdk-1 is the bid/ask spread immediately before trade k occurs. It is calculated in 

units of cents. LBBVk-1 is the natural logarithm of the number of shares at the best bid 

price immediately before trade k occurs. One share is added to each LBBVk-1 so the 

logged value of zero volume at the best bid also returns a zero,  

LBBVk-1 = Ln (1+ LBBVk-1).     (14) 

εk-1 is the standardized transaction duration estimated in an ACD(2,2) model from 

diurnally adjusted conditional and unconditional durations in equation (10). LVolk-1 is the 

natural logarithm of the size of (k-1)th trade. TIk-1 is a trade indicator of the (k-1)th trade, 

where TIk-1 = 1 if it is a buyer initiated trade, TIk-1=-1 if it is a seller initiated trade and 

TIk-1=0 if it is other types of trades such as crossings. TIBk-1 is the trade imbalance 

variable, calculated as the number of buyer initiated trades as a percentage of the total 

trading volume in the past 30 trades on the same day,  
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Finally, ΔIDXk-1 is the return on index for the k-1th trade calculated from 

 )IDXIDX(LnIDX 2k1k1k −−− −=Δ .      (16) 

An ordered probit model that includes all the above explanatory variables is given by the 

following expression: 
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where the conditional duration, ψk-1, and the standardized transaction duration, εk-1, are 

estimated from an ACD(1,1) specification 
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To accommodate the heteroscedasticity in the conditional variance of residuals as in 

Hausman et al. (1992), we consider a GARCH(2,2) specification  

2
2k2

2
1k1

2
2k2

2
1k1

2
k hhh −−−− ++++= εδεδθθυ .    (19) 

All the unknown parameters in the system are estimated using maximum likelihood 

method.  
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4.2. Sample statistics  

Table 1 provides the summary statistics of the variables to be used in the ordered probit-

GARCH system. The price levels of the stocks range from A$0.78 for KAZ to A$44.10 

for CSL, showing a relatively wide dispersion on the ASX. The degree of volatility is 

measured as the percentage change in the daily high and low prices. With a high of 262% 

for a small stock KAZ, most stocks have price volatility of less than 24%. The proportion 

of buyer-initiated and seller-initiated trades is very similar for all stocks.6 This property 

of the data, combined with the observation of zero values in the mean returns on both 

stocks and indices to, suggests that throughout our sample period there were no major 

news arrival events which could cause trades and abnormal returns concentrated on one 

side of the market.  

The average time between trades, a measure of trading frequency, varies 

substantially amongst stocks.  Some liquid stocks such as TLS, BHP and NCP are traded 

every 20 seconds or less, while for others the trading frequency is approximately one 

minute. KAZ is traded only every two hours. Depth is measured as the number of shares 

at the best bid and ask price immediately before a transaction. This variable is closely 

associated with the price impact cost. Comparing it across the sample shows that TLS 

provides the deepest market, hence for trades in this stock the potential price impact cost 

is minimized. For this reason, we see that the average trade size in TLS is more than ten 

times larger than that of other stocks.  

                                                 
6An order initially entered by a trader to buy shares and then executed is classified as a buyer-initiated 
trade; an order initially entered by a trader to sell shares and then executed is classified as a seller-initiated 
trade. A third type of trades is ‘undefined’, including all trades that are neither buyer initiated nor seller 
initiated. Examples of this type of trades include crossings, or off-market trades. 
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The definition of trade imbalance given above in equation (15) implies that its 

value has a range of –1, when all past 30 trades are seller-initiated trades, and 1, when all 

past 30 trades are buyer-initiated trades. Having zero in between denotes cases where 

there are more seller-initiated trades than buyer-initiated trades (TIBk < 0) from those 

where there are more buyer-initiated trades than seller-initiated trades (TIBk > 0). In Table 

1, five stocks have a small negative trade imbalance, indicating that there are slightly 

more selling transactions in those stocks in the past 30 trades, whereas the other four 

stocks have slightly more buying transactions in the past 30 trades.   

5. Model Estimation Results 

Consistent with findings in previous research that there is less likelihood of non-

stationarity in high frequency data points, all variables considered in this context are 

stationary at 99% in an Augmented Dickey-Fuller test of unit roots. For sake of brevity, 

the results of unit root tests are not presented herein. The maximum likelihood estimates 

of the ACD(1,1) model on the diurnal adjusted durations, the ordered probit model on 

price changes, and the GARCH(p, q) on the residual series are computed using the 

BHHH algorithm proposed by Berndt et al. (1974). The coefficients are estimated using 

the first 16 weeks in the sample for all stocks. The last week starting on 25th July until 

31st July 2002 is left for an out-of-sample forecast. 

 

5.1. Estimation results from duration models 

Table 2 contains estimating results from an ACD(1,1) model in equation (18). The model 

is estimated assuming a Weibull distribution for the diurnally adjusted durations of the 
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stocks. The time-of-the-day effect is eliminated by regressing durations on hour-of-the-

day dummy variables.  

The large values of t-statistics of the estimated coefficients in Table 2 provide 

strong support of diurnally adjusted duration following a Markov process. The past 

behaviour of conditional and unconditional durations, implies they have explanatory 

power on current durations. The standardized durations, εk ~ i.i.d, are then obtained from 

the ACD estimation as in Equation (10). Dufour and Engle (2000) explored the degree of 

exogeneity in the standardized durations. Using NYSE data, they find that returns, trades 

and volume all have feedback effects on standardized durations. In the case of Australian 

stock data, we performed a regression of standardized durations on those variables and 

the results show that most of the parameters are not statistically significant. Therefore, 

standardized durations are deemed weakly exogenous. That all values of the scale 

parameter are statistically significant and different from unity indicates the superiority of 

using the Weibull distribution over the exponential distribution. 

 

5.2. Estimation results from price changes models 

The estimates from the probit-GARCH system that also incorporates the ACD model 

estimates are presented in Table 3. The first panel of Table 3 illustrates estimation 

coefficients from the ordered probit model. For each coefficient, the z-statistic presented 

below each coefficient is used to measure the level of significance. It is calculated as the 

estimated mean of a coefficient divided by its asymptotic standard error.7 Overall, the z-

                                                 
7 z-statistic has a null hypothesis of zero estimating coefficient and is asymptotically distributed a normal 
variate, see Hausman et al.  (1992). 

 21



statistics indicate that the estimated coefficients are significantly different from zero for 

most of the explanatory variables.  

We first examine the coefficients of the three lags of the dependent variable. 

These coefficients are significant with a negative sign across all stocks, indicating a 

consequent price reversal from past price changes. For example, holding other variables 

constant, a one tick downwards in TLS from each of the last three trades will increase the 

conditional mean of dpk* by 1.36+0.83+0.42 = 2.61 ticks, which means dpk= 1 as 2.61 is 

greater than the upper boundary. This negative relation is consistent with findings in the 

literature. Second, the coefficients of those conventional variables, the spread, trade size, 

and the index returns, are statistically significant for approximately half of the stocks. The 

trade indicator is significant for eight stocks  

Third, consistent with our initial conjecture, the substantially significant z-

statistics of the depth variables, the number of shares at the best bid price (LBBV) and the 

number of shares at the best ask prices (LBAV), show a close relation to price changes. 

Moreover, the signs of these variables provide interesting insights into the relation. The 

positive sign observed for all coefficients of LBBV imply a positive effect of the volume 

at the best bid price on the conditional mean of dpk*, indicating that LBBV increases the 

probability of a price rise. On the other hand, the negative sign observed for all 

coefficients of LBAV indicates a negative effect of volume at the best ask price on the 

conditional mean of dpk*, indicating that LBAV increases the probability of a price fall.  

Fourth, the trade imbalance (TIB), used to measure the degree of buy-sell 

imbalance, is also positively related to price changes with statistical significance for all 

stocks. This evidence implies that if there have been more buyer-initiated trades in the 
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past 30 trades, resulting in a positive value of trade imbalance, then there is a greater 

probability of a subsequent price rise. This finding is intuitive because a greater number 

of buyer-initiated trades put pressure on the buy side that may eventually push the price 

up. The opposite is true with negative trade imbalance when there are more seller-

initiated trades and the pressure is placed on the sell side of the stock. This finding 

confirms our initial inference as well as the theory.  

Fifth, the coefficients on the signed conditional durations (also called expected 

durations), TIk-1*ψk-1, and the signed standardized durations (also called unexpected 

durations), TIk-1*εk-1, are examined. For half of the stocks either coefficient is significant. 

For instance, we see that the conditional duration drives the subsequent price changes in 

BHP, but it is the standardized duration that determines the future price change in the 

case of WPL. Both durations are significant for TLS, CBA and CSL. Recall that these 

two durations are two components of the diurnally adjusted duration in the equation: 

11 *~
−−= kkkx εψ . Hence if one of the variables is positive while the other is negative, the 

product will be negative.8 For all stocks we find that the aggregated or diurnally adjusted 

duration has a negative sign, indicating its negative correlation to price changes. This 

finding is in line with the theoretical model prediction of Easley et al. (1996). It is also 

similar to the finding of Dufour and Engle (2000) that a buying transaction arriving after 

a long period of time causes less price changes than a buying transaction arriving right 

after a previous trade. Absent market makers on an order driven market such as the ASX, 

the reason for this phenomenon could be that traders perceive a higher likelihood of 

                                                 
8 Note that the trade indicator, TIk, won’t affect the sign of the product in the equation, as TIk *TIk will 
always be positive. 
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informed trading when the trading is intense. The presence of heavy trading may also 

deter the uninformed from transacting, further increasing the proportion of informed 

trading, and therefore increasing the probability of price changes.  

To further assess the significance of durations on price changes, we perform Wald 

tests of the null hypotheses that the coefficient of the conditional duration is zero, the 

coefficient of the standardized duration is zero, and both coefficients are jointly zero. The 

results are presented in Table 4. For five out of nine stocks, the f-statistics suggest that we 

reject the null hypotheses.  

Presented in the second panel of Table 3 are the partition boundaries computed in 

the estimation to partition the differing directions of price changes. Given the three 

possible directions of price changes, dpk < 0, dpk = 0 and dpk > 0, these boundaries are 

used to determine whether the estimate in ticks has a positive, negative or zero value, 

depending on the value of the estimated continuous variable  and which of the three 

partitioning states it falls in. Pseudo-R

kpdˆ

*ˆ kpd

2 values are presented at the bottom of the first 

panel. 

Finally, the conditional variance is parameterized. We in this case presume that 

the conditional variance follows an ARMA process and thereby apply a GARCH(p, q) to 

the residual series of the probit model. The coefficients are included in the bottom panel 

of Table 3. The order of p and q for each individual stock is determined by Akaike 

information criteria. The estimation results of GARCH models show that all coefficients 

are significantly different from zero in the first or second lag of both or either of the 

conditional variance and the squared residuals.  
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The diagnostic test that examines the properties of the residual series is an 

important part of statistical estimation because it reveals the validity of the estimates. In 

this context, serial correlation is detected for the generalized residuals along the lines of 

Hausman et al. (1992) by computing cross correlation coefficients of the generalized 

residuals with the lagged generalized fitted values. Under the null hypothesis of no 

autocorrelation in the residual series, the theoretical value of the cross correlation should 

be zero, or very close to zero. Using 20 lags, the cross correlation coefficients of the 

generalized residuals and the lagged generalized fitted values  are very small and 

close to zero. To save on space, the results are not presented here. 

*ˆ kpd

 

5.3. Forecasting Analysis 

Turning to the forecasting power of the modelling framework, we undertake in-sample 

and out-of-sample forecasting tests. Data from the last week (week 16) of the estimation 

period from 18 July to 24 July are used for the in-sample forecasts. For out-of-sample 

forecasts, the next seven days’ data from 25 July to 31 July that are not included in the 

original estimation are used. For each trade, the fitted values of  are computed   from 

 using estimated parameters and partition boundaries. Then with the estimated and 

actual price movements, we evaluate the forecasting effectiveness from the forecast error 

statistics computed and reported in Table 5 below. We first present the widely used 

forecast error statistic known as the root mean square error (RMSE), computed as 

follows: 

kpdˆ

*ˆ kpd
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∑ −=
n

1

2 n/)yŷ(RMSE ,     (21) 

where n represents the number of observations in the forecasting sample. Using this 

statistic we find that NCP yields the best forecasting estimates in both in-sample and out-

of-sample tests, as RMSE has the smallest value in this stock. With an RMSE of 0.58, 

stock AGL performs the least effective in both forecasts.  

A second measure of forecasting error is the mean absolute error (MAE), 

computed as follows: 

∑ −=
n

1

n/|yŷ|MAE ,    (22) 

where n is defined as above. From the closeness of the two measures, MAE’s statistics 

presented in Table 5 are consistent with those from RMSE, pointing at NCP as the best 

performer, and AGL the worst.  

It is however noted that in this study the dependent variable is discrete and only 

takes three numbers of -1, 0, and 1, the usual forecast error statistics above may not give 

a thorough test for the forecasting ability of the model. We therefore consider a second 

method. We pair and compare the fitted (forecasted from estimated coefficients) with 

the actual dp

kpdˆ

k (in the original sample data) and find the degree of difference in the 

forecasting samples. The percentage of correctness is calculated from the number of 

correct forecasts on total forecasts. The in-sample forecasting results are illustrated in 

Panel 1 of Table 6, and the out-of-sample forecasting results are provided in Panel 2 of 
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Table 6. The top half of each panel gives information on the size of the forecasting 

sample and the proportion of correct forecasts for each stock.  

Contrary to general finding that the ex ante forecast is worse than the ex post 

forecast, for four out of our nine sample stocks, the out-of-sample forecast is better than 

the in-sample forecast. The average proportion of correct forecast is approximately 72%, 

implying strong forecasting power in the ordered probit system. As expected, the ranking 

of the stocks’ performance differs from that based on the earlier forecast error tests. In 

this case we find that KAZ is the best performer followed by BHP. 

Although the results show that even the worst performing stock still achieves over 

60% of correct forecasts, it would be useful to further investigate the scenario of 

prediction error. In practice, a trading strategy can be created from the predicted direction 

of stock price movements. For instance, if a stock rise is predicted, an investor can take a 

long position in the stock at the current time and liquidate it later when an actual rise 

occurs. A short position can be taken if the price is predicted to fall. However, of all the 

prediction error scenarios the most risky one would be adverse selection, that is, a case 

when a price fall is predicted but a rise actually occurs, or vice versa. For this reason we 

examine the percentage of that occurrence in our forecast estimates. As shown in the 

bottom half of both panels in Table 6, for all stocks, over 99% of forecasts do not fall into 

predicting opposite price directions.  

Prediction errors may come from cases where no change in price direction is 

predicted when there is actually a change. To further investigate whether the model has 

the tendency to predict no change, we compute the fitted probability of the estimated 

 falling into each of the categories, -1, 0, and 1 over the forecasting period. We find kpdˆ
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that, for all stocks, the fitted probability of falling into category 2, or no change, is 

usually over 50%.9 The fitted probability of falling in each of the categories sums up to 

one for each observation, suggesting the model does tend to predict no change. For 

illustration purposes, the fitted probability of falling into all three categories is depicted in 

Figure 1 for a single stock, KAZ, for 50 observations in the forecast sample.   

5.3. Robustness and limitations 

We perform robustness checks of the usefulness of an ordered probit model that explicitly 

accounts for price discreteness in this section. In particular, using the same explanatory 

variables, we compare the performance of our model with one that is estimated using 

OLS. Instead of using an integer dependent variable that takes values of -1, 0, and 1, the 

actual returns are employed as the dependent variable for the regressions. The estimating 

results show that on average, the OLS estimates generate lower R-squares than their 

equivalent in ordered probit model estimates for all stocks. We are unable to use this 

model to create a trading strategy and make comparisons as the forecast estimates do not 

give a broad and general direction of price movements as in the ordered probit model. 

To contrast forecasting performance, as an alternative we compared our model 

with another ordered probit model that does not have any explanatory variable other than 

the three lags of the dependent variable. Within our expectation, the R-square of the 

ordered probit models decreases by as much as 50% in the sample. For example, the R-

square of the naïve model for BHP reduced to 9.1% from 17.6% in the original model. In 

the in-sample and out-of-sample forecasts, we obtain a higher forecast error using both 

RMSE and MAE tests, and a lower percentage of correctly forecasted trades. For 

                                                 
9 In the interest of saving space, the results are not presented here, but will be provided upon request. 
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example, in the case of BHP in-sample forecast, the RMSE is 0.60 with 65% of correct 

predictions, markedly worse than that from the original model.  

As mentioned before, the model has a tendency to predict no change when there is 

actually a fluctuation in future prices. This means a small number of cases involving 

movement in prices are not captured by the system. Although this characteristic rules out 

the risk of adverse selection, an active and growth driven investor may find this model 

not dynamic and reactive enough to market price changes.  

 

6. Conclusion 

In an empirical analysis, this paper is concerned with analysing the intra-day stock prices 

and predicting the direction of price movements conditional on the past price paths, trade 

imbalance, depth, durations, trade indicator, volume, spread, and index returns. We use a 

sample of nine stocks, selected from each of the main industry sectors on the ASX. 

Unlike many prior studies, the exogeneity of the arrival rate of each trade, referred to as 

duration, is formally tested in the present study. The conditional mean of diurnally 

adjusted durations is modelled in an ACD framework of Engle and Russell (1998).  The 

discreteness of price series is also accounted for by an ordered probit-GARCH system.  

The results show that all independent variables are statistically significant for 

most stocks. In particular, the contrary signs of the depth coefficients indicate that 

volume at the best bid price has a positive effect, and volume at the best ask price a 

negative effect on the probability of consequent price change. A strong positive relation 

is found between the trade imbalance and the conditional price changes, suggesting that 

dominant buying transactions in the past put upward pressure on prices, thereby 

 29



increasing the probability of a consequent rise in price. Similarly, dominant selling 

transactions in the past put downward pressure on prices, therefore increasing the 

probability of a consequent fall in price. This finding is consistent with theory on the 

information content of net order flow (Kyle (1985)).  

We find signed conditional durations and unexpected durations to be significant 

for five stocks, contributing to the existing informational role of time in the price process. 

A negative joint sign found in all stocks means that a buying transaction after a long 

period has less probability of an increase in price than a buying transaction right after the 

previous transaction. This is consistent with the finding of Dufour and Engle (2000) on 

NYSE stocks.   

The forecasting power of the model is tested for in in-sample and out-of-sample 

forecasts. In both cases the average percentage of correct forecasts is 72%. The forecasted 

direction of prices can be used by investors to establish profitable trading strategies. In 

most prediction error cases, the model tends to forecast no change when there is actually 

a change in prices. This propensity however is useful to investors for ruling out the risk of 

adverse selection. In the meantime, active and growth driven investors may find this 

model of limited use. Increasing the flexibility and adaptability of the model is a 

potentially fruitful line for future research. 
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Fitted probability for 50 observations for stock KAZ 
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Figure 1. Fitted probability of the estimated  falling into each of the categories, -1, 0, and 1 for a single 
stock, KAZ, as a representative of the other stocks, for 50 observations in the forecast sample. For each 
observation, the fitted probability of falling in each of the categories sums up to one.  

kpdˆ
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Table 1. Descriptive statistics for all variables. High/low price is the highest or lowest price quoted over the 
whole sample period. % price change calculates the percentage price change between its highest and lowest 
level, (high price – low price)/low price. Spread is the bid-ask spread immediately before a trade occurs. 
Return on the sector index is return calculated from an index of the sector an individual stock belongs to. 
Time between trades is the time in seconds between two consecutive trades. Trade imbalance is calculated 
as the number of buyer initiated trades as a percentage of total volume in the past 30 trades. 
Stock Code TLS AGL BHP CBA CSL KAZ NCP WES WPL 
Industry Telecom. Utilities Resources Financial Health Care Info. Tech. Media Industrials Energy 
Panel A: price summary 
High price (A$) 5.42 10.33 11.97 34.94 44.1 0.78 13.89 31.9 14.94 
Low price (A$) 4.45 8.98 10.49 29.02 31.31 0.215 8.44 25.75 12.32 
% Price change 21.80% 15.03% 14.11% 20.40% 40.85% 262.79% 64.57% 23.88% 21.27% 
Panel B: % price change         
Mean 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0001 0.0000 0.0000 0.0000 
Median 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Maximum 0.0045 0.0072 0.0036 0.0045 0.01 0.07 0.0061 0.0058 0.0052 
Minimum -0.0044 -0.0072 -0.0054 -0.0042 -0.01 -0.05 -0.0049 -0.0072 -0.0057 
Std.Dev. 0.001 0.0007 0.0004 0.0003 0.0008 0.0048 0.0006 0.0006 0.0006 
Panel C: return on the sector index 
Mean 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
Median 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
Maximum 0.41% 0.33% 0.41% 0.11% 0.40% 1.00% 0.29% 0.58% 0.43% 
Minimum -0.18% -0.39% -0.18% -0.16% -0.34% 1.00% -0.38% -0.33% -0.68% 
Std.Dev. 0.02% 0.05% 0.02% 0.01% 0.04% 0.13% 0.02% 0.03% 0.04% 
Panel D: time between trades (seconds) 
Mean 12 65 14 20 52 132 16 58 56 
Median 3 21 4 7 12 9 5 18 16 
Std.Dev. 20 108 27 34 106 357 33 101 101 
Panel E: shares at the best bid price 
Mean 227,522 5,905 19,631 8,196 1,489 120,553 12,485 1,833 5,128 
Median 84,631 2,833 9,000 2,795 900 39,834 5,000 1,000 3,000 
Maximum 18,773,939 753,324 1,100,000 300,000 40,000 819,668 1,000,000 100,153 116,098 
Std.Dev. 484,558 14,005 34,836 8,944 1,977 376,799 35,386 3,181 6,552 
Panel F: shares at the best ask price 
Mean 254,423 6,054 24,210 5,260 1,589 94,017 11,205 2,454 5,635 
Median 84,566 2,790 13,158 3,000 1,000 44,019 6,315 1,441 3,594 
Maximum 4,836,780 1,000,000 2,525,000 151,000 52,242 1,000,000 956,501 100,000 165,217 
Std.Dev. 385,847 19,717 36,665 7,627 2,097 129,366 18,173 4,198 6,747 
Panel G: trade size 
Mean 11,312 1,860 7,494 2,483 4,437 1,666 3,211 788 2,010 
Median 2,000 989 2,500 940 186,305 617 1,494 431 1,000 
Maximum 1,000,000 746,676 1,200,128 1,500,000 225,000 105,000 200,000 60,000 50,000 
Std.Dev. 31,143 6,863 14,780 8,485 6,983 2,694 4,995 1,137 2,699 
Panel H: trade imbalance 
Mean -0.0456 -0.0282 0.0183 0.0011 0.0037 -0.0634 -0.0061 0.0319 -0.045 
Median -0.0578 -0.0189 0.028 0.0029 -0.007 -0.0695 -0.0006 0.0457 -0.0473 
Std.Dev. 0.6576 0.4199 0.4553 0.426 0.4508 0.5464 0.4392 0.4149 0.3943 
Panel I: trade direction 
Buyer initiated 47.24% 44.93% 47.33% 44.80% 44.54% 40.96% 46.21% 46.93% 44.47% 
Seller initiated 44.52% 45.73% 42.23% 47.27% 44.55% 49.16% 45.10% 43.31% 44.95% 
 



Table 2. Descriptive statistics. The table presents ACD(1,1) estimates on a Weibull distribution 
11

~
−− ++= kkk xβαψωψ  for the sample stocks, where  

represents diurnally adjusted duration for the kth trade, and ψ
kx~

k represents the conditional mean of duration for the kth trade.  λ is the scale parameter of the 
Weibull distribution function. Below the estimated coefficients are t-statistics. * significant at 90% level. 
 TLS AGL BHP CBA CSL KAZ NCP WES WPL 
ω 1.49 3.78 1.59 1.83 2.74 5.36 1.57 3.78 3.56 
 67.39* 99.70* 78.81* 78.37* 172.43* 114.03* 74.29* 57.24* 54.49* 
α1

-0.16 -0.3 -0.13 -0.15 -0.01 -0.12 -0.13 -0.17 -0.18 
 -9.52* -25.59* -6.12* -10.27* -2.25* -14.22* -8.42* -8.50* -8.59* 
β1

0.16 0.08 0.15 0.13 0.07 0.05 0.14 0.07 0.08 
 65.08* 66.22* 76.05* 73.52* 68.63* 39.86* 71.68* 46.65* 43.96* 
λ 5.09 3.61 4.89 4.5 3.74 3.56 4.6 4.11 3.88 
 754.15* 357.89* 732.40* 670.88* 385.42* 266.43* 714.06* 400.17* 388.00* 
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Table 3. Estimation results of price changes in an ordered probit-GARCH system per equations (18) and (20) for sample stocks on the ASX. The dependent 
variable is dpk, the price change in ticks; dpk* is the latent continuous version of dp; dpk-i denotes i lags of the dependent variable; Sprk-1 is the bid/ask spread 
immediately before trade k occurs; BBVk-1 (BAVk-1) is the number of shares at the best bid (ask) price immediately before trade k occurs; εk-1 is the standardized 
transaction duration estimated in an ACD(1,1) model from diurnally adjusted conditional and unconditional durations; LVolk-1 is the natural logarithm of the size 
of (k-1)th trade; TIBk-1 is the trade imbalance calculated from past 30 trades; ΔIDXk-1 is the return on an index for the (k-1)th trade multiplied by 100; TIk is trade 
indicator. Below the estimated coefficients are t-statistics. * significant at 90% level.. 
 TLS AGL BHP CBA CSL KAZ NCP WES WPL 
Panel A: mean equation - ordered probit model       

dpk-1 -1.36 -0.611 -0.851 -0.579 -0.075 -0.735 -0.934 -0.212 -0.492 
 -90.13* -16.50* -61.47* -29.25* -2.38* -16.12* -46.37* -6.96* -13.75* 
dpk-2 -0.826 -0.408 -0.464 -0.217 0.023 -0.407 -0.498 -0.017 -0.17 
 -59.25* -11.38* -35.10* -12.21* 0.82 -9.33* -26.01* -0.63 -5.02* 
dpk-3 -0.422 -0.246 -0.247 -0.084 0.071 -0.275 -0.248 0.052 -0.054 
 -36.74* -7.67* -20.86* -4.95* 2.64* -6.89* -13.63* 2.03* -1.77* 
TIk-1 -0.065 0.056 0.108 0.115 0.119 0.115 0.153 0.12 0.177 
 -2.370* 0.85 3.68* 10.59* 2.04* 1.88* 3.07* 1.93* 2.59* 
Sprdk-1 -0.504 3.692 -0.379 0.115 -0.296 -8.904 -0.042 -0.226 -0.72 
 -2.89* 4.40* -1.21 2.04* -1.07 -3.43* -2.30* -1.35 -0.5 
LVolk-1 0.007 0.026 0.02 -0.001 0.008 0.017 0.036 -0.033 0.026 
 2.15* 1.58 4.96* -0.15 0.53 1.25 5.00* -2.01* 1.67* 
ΔΞΔΙ1−κ -60.443 71.224 -114.876 235.521 29.673 3.309 43.474 14.005 45.498 
 -6.79* 1.81* -3.65* 2.68* 0.68 0.29 1.05 0.27 1.08 
LBAVk-1 -0.121 -0.434 -0.211 -0.393 -0.462 -0.198 -0.413 -0.497 -0.477 
 -46.07* -30.54* -58.02* -62.62* -34.39* -17.58* -62.99* -36.24* -33.94* 
LBBVk-1 0.116 0.438 0.16 0.409 0.466 0.192 0.356 0.472 0.43 
 42.51* 31.57 44.05* 61.98* 34.43* 16.11* 56.34* 33.09* 30.23* 

TIBk-1 0.072 0.161 0.06 0.158 0.259 0.079 0.21 0.176 0.156 
 9.05* 4.05 5.23* 7.69* 7.02* 2.74* 10.73* 4.77* 3.83* 
ψ1−κ -0.021 -0.008 -0.007 -0.017 0.014 -0.003 0.001 0.008 0.006 
 -4.10* -1.02 -1.82* -2.77* 1.83* -0.4 0.23 1.03 0.74 
ε1−κ 0.095 0.078 0.018 0.092 -0.117 0.049 -0.002 -0.047 -0.114 
 2.58* 1.2 0.6 1.94* -1.97* 0.91 -0.04 -0.76 -1.79* 
no. of obs. 102,273 20,485 90,112 73,309 23,146 10,016 90,058 22,154 22,157 
Pseudo-R2 0.283 0.124 0.176 0.115 0.091 0.153 0. 114 0.098 0.106 
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Table 3 (continued) 
Panel B: partition boundaries 

 TLS AGL BHP CBA CSL KAZ NCP WES WPL 
dpk  < 0 (-∞, -1.68] (-∞, -1.86] (-∞, -1.91] (-∞, -1.83] (-∞, -1.74] (-∞, -1.49] (-∞, -2.54] (-∞, -2.20] (-∞, -2.27] 
dpk  = 0 (-1.68, 1.71] (-1.86, 2.22) (-1.91, 1.16) (-1.83, 2.18) (-1.74, 1.89) (-1.49, 1.73) (-2.54, 1.99) (-2.20, 1.36) (-2.27, 1.81) 
dpk  > 0 (1.71, +∞] (2.22, +∞] (1.16, +∞] (2.18, +∞] (1.89, +∞] (1.73, +∞] (1.99, +∞] (1.36, +∞] (1.81, +∞] 
Panel C: Variance Equation - GARCH(p, q) 
c 0.017 0.007 0.013 0.013 0.078 0.012 0.007 0.061 0.022 
 6.93* 3.91* 4.72* 4.74* 5.92* 2.82* 5.67* 53.83* 3.69* 
δ1

0.12 0.032 0.018 0.018 -0.104 0.017 0.043 0.06 0.045 
 33.47* 4.60* 6.57* 6.57* 14.67* 4.56* 12.94* 8.70* 6.59* 
δ2

-0.069 -0.011 0 0 -0.004 - -0.01 - -0.015 
 -9.80* -1.5 0.02 0.05 -0.34 - -1.64 - -1.85 
θ1 1.59 0.946 0. 321 0.321 0.557 0.958 0.587 0.472 0.865 
 13.94* 87.51* 1.5 1.5 8.12* 84.67* 3.63* 3.57* 26.30* 
θ2 -0.144 - 0.636 0.636 - - 0.34 0.205 - 
 -2.19* - 3.007* 3.07* - - 2.24* 1.69* - 

 
 

 



Table 4. Wald tests of coefficient restrictions to the estimated coefficients of two types of durations from the 
ordered probit model in equation (18) for all stocks in the sample. c(9) is the coefficient of the signed standardized 
(or unexpected) duration, εk, and c(10) is the coefficient of the signed conditional(or expected) duration, ψk.  * 
denotes values of f-statistics significant at 90%. 

 TLS   AGL BHP CBA CSL KAZ NCP WES WPL 
 f-stat f-stat f-stat f-stat f-stat f-stat f-stat f-stat f-stat 

H0: c(9) = 0 16.84* 1.16 3.33* 6.61* 3.32* 0.19 0.07 0.73 0.57 
H0: c(10) = 0 6.66* 1.4 0.36 3.51* 3.85* 0.88 0.01 0.33 3.34* 
H0: c(9) = c(10) = 0 8.43* 0.85 2.72* 3.69* 2.40* 0.45 0.06 0.38 2.68* 
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Panel 1: in sample prediction from 18/07 to 24/07 
 TLS AGL BHP CBA CSL KAZ NCP WES WPL 
Total obs. in forecast 4,339 1,162 6,191 8,138 2,122 201 7,810 1,418 1,887 
Root Mean Square Error 0.493 0.578 0.464 0.191 0.404 0.457 0.183 0.56 0.418 
Mean Absolute Error 0.243 0.332 0.215 0.037 0.163 0.209 0.033 0.31 0.175 
Panel 2: out of sample prediction from 25/07 to 31/07 
Total obs. in forecast 4,710 1,433 7,896 8,212 1,344 564 7,713 1,687 1,224 
Root Mean Square Error 0.49 0.535 0.455 0.227 0.574 0.266 0.219 0.497 0.584 
Mean Absolute Error 0.241 0.359 0.207 0.051 0.328 0.071 0.048 0.291 0.339 
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Table 5: In-sample and out-of-sample forecasting tests results. The first forecast test calculates root mean 

square error (RMSE) from the following formula: ∑ −
n

1

2 n/)yŷ(

∑ −
n

1
n/|yŷ|

, where n is the sample size in the 

forecasting period. The second forecast test calculates the mean absolute error (MAE) from the following 
formula: , where n is as defined above. 



Table 6 In-sample and out-of-sample forecasts of price change directions with percentages of correctness. The actual count of observations is based on dpk’s, and the 

estimated count of observations is based on the fitted values of ’s from its continuous counterpart using the estimated coefficients of explanatory variables 
and partition boundaries. % Correct is the percentage of missed observations on the total number of observations. 

kp̂d *ˆ kpd

Panel 1: In Sample Prediction from 18/07 to 24/07                       
  TLS AGL BHP CBA CSL KAZ NCP 

Total obs. in 
forecast 

4,339 1,162 6,191 8,138 2,122 201 7,810 

% correct forecast 75.68% 66.90% 78.46% 69.50% 68.88% 79.21% 77.19% 
Actual Forecast obs. % obs. % obs. % obs. % obs. % obs. % obs. % 
Fall Rise 0 0.00% 1 0.10% 0 0.00% 3 0.00% 1 0.00% 0 0.00% 2 0.00% 
Rise Fall 0 0.00% 0 0.00% 0 0.00% 0 0.00% 1 0.00% 0 0.00% 1 0.00% 
Panel 2: Out of Sample Prediction from 25/07 to 31/07                       
Total obs. in 
forecast 

4,710 1,433 7,896 8,212 1,344 564 7,713 

% correct forecast 74.04% 76.34% 79.33% 68.14% 63.10% 81.71% 74.35% 
Actual Forecast obs. % obs. % obs. % obs. % obs. % obs. % obs. % 
Fall Rise 0 0.00% 0 0.00% 1 0.00% 0 0.00% 1 0.10% 0 0.00% 0 0.00% 
Rise Fall 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 
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